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ABSTRACT. According to Liouville’s Theorem, an idefinite integral of
an elementary function is usually not an elementary function. In these
notes, we discuss that statement and a proof of this result. The differ-
ential Galois group of the extension obtained by adjoining an integral
does not determine whether the integral is an elementary function or
not. Nevertheless, Liouville’s Theorem can be proved using differential
Galois groups. The first step towards such a proof was suggested by
Abel. This step is related to algebraic extensions and their finite Ga-
lois groups. A significant part of these notes is dedicated to the second
step dealing with pure transcendent extensions and their Galois groups,
which are connected Lie groups. The idea of the proof goes back to
J. Liouville and J. F. Ritt.
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INTRODUCTION

Let K be a subfield of the field of meromorphic functions on a connected domain
U of the complex line closed under the differentiation (i.e., if f € K then f’ € K).
Such field K with the operation of differentiation f — f’ provides an example of
functional differential field. Liouville’s Theorem suggests conditions on a function
f from a function differential field K which are necessary and sufficient for repre-
sentability of an indefinite integral of f in generalized elementary functions over
K.

In Sections 1-4 we define the notions of functional differential field K and gen-
eralized elementary functions over K (we follow here the exposition from [I]). A
natural definition of generalized elementary functions over K (see Definitions 4 and
5 below) is hard to deal with. In particular it involves a big enough list of basic
elementary functions and makes use of a non-algebraic operation of composition of
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functions. An algebraic definition (see Definition 1 below) of generalized elementary
extension of K uses solution of the simplest differential equations instead of com-
position of functions. We explain how this natural definition can be reduced to the
algebraic one. In Section 5 we state Liouville’s Theorem and outline its inductive
proof.

Using the algebraic definition of generalized elementary extension one can gen-
eralize Liouville’s Theorem for an abstract differential field K, whose elements are
not necessarily meromorphic functions. An exposition of this result and references
to original papers can be found in [1]. This abstract algebraic result is not directly
applicable to integrals of elementary functions of one complex variable, which could
be multivalued, could have singularities, and so on. For its applications to elemen-
tary functions extra arguments (analogous to arguments we presented in Sections
1-4) are needed.

The differential Galois group of the extension K C K (y) does not contain enough
information to determine if the integral y belongs to a generalized elementary exten-
sion of K or not. Indeed, if the integral y does not belong to K then the differential
Galois group of K(y) over K is always the same: it is isomorphic to the additive
group of complex numbers. From this fact one can conclude that the Galois theory
is not sensitive enough for proving Liouville’s Theorem.

The goal of this notes is to show that Galois theory type arguments allow to
prove Liouville’s Theorem.

The first step towards such proof was suggested by Abel. This step is related to
finite algebraic extensions and their finite Galois groups (see Section 6).

The second step deals with a pure transcendental extension F' of a functional
differential field K, obtained by adjoining k + n logarithms and exponentials, alge-
braically independent over K (see Section 7). The differential Galois group of the
extension K C F is a (k + n)-dimensional connected commutative algebraic group
G. Tt is naturally represented as a group of analytic automorphisms of an analytic
variety X. Thus G acts not only on the differential field F but also on other objects
such as closed 1-forms on X. This action plays a key role in the proof.

The idea of the proof goes back to Liouville. I came up with it trying to under-
stand and to comment the classical book written by J. Ritt [2]. T am grateful to
Michael Singer who invited me to write comments for a new edition of this book.

1. ABSTRACT DIFFERENTIAL FIELDS

A field F is said to be a differential field if an additive map a — o’ is fixed that
satisfies the Leibnitz rule (ab)’ = a’b+ ab’. The element o’ is called the derivative
of a. An element y € F is called a constant if y' = 0.

All constants in F' form the field of constants. We add to the definition of
differential field an extra condition that the field of constants is the field of complex
numbers(for our purpose it is enough to consider fields satisfying this condition).

An element y € F' is said to be: an exponential of a if y' = da'y; an exponential
of integral of a if y' = ay; a logarithm of a if y' = a’/a; an integral of a if y’ = a. In
each of these cases, y is defined only up to an additive or a multiplicative complex
constant.
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Let K C F be a differential subfield in F'. An element y is said to be an integral
over K if y = a € K. An exponential of integral over K, a logarithm over K, and
an integral over K are defined similarly.

Suppose that a differential field K and a set M lie in some differential field F'.

The adjunction of the set M to the differential field K is the minimal differential
field K(M) containing both the field K and the set M. We will refer to the
transition from K to K (M) as adjoining the set M to the field K.

Definition 1. A differential field F' is said to be a generalized elementary extension
of a differential field K if K C F and there exists a chain of differential fields
K =F,C---CF, D F such that F;; = F;(y;) for every i =0, ..., n — 1 where
y; is an exponential, a logarithm, or an algebraic element over Fj.

An element a € F' is a generalized elementary element over K, K C F, if it is
contained in a certain generalized elementary elementary extension of the field K.
The following lemma is obvious.

Lemma 1. An extension K C F is a generalized elementary extension if and only
if there exists a chain of differential fields K = Fy C --- C F,, D F such that for
every it = 0, ..., n—1, either F;11 is a finite extension of F;, or F;+1 is a pure
transcendental extension of F; obtained by adjoining finitely many exponentials and
logarithms over F;.

2. FUNCTIONAL DIFFERENTIAL FIELDS AND THEIR EXTENSIONS

Let K be a subfield in the field F' of all meromorphic functions on a connected
domain U of the Riemann sphere C'Uoo with the fixed coordinate function z on C*.
Suppose that K contains all complex constants and is stable under differentiation
(i.e., if f € K then f/ = df/dx € K). Then K provides an example of a functional
differential field.

Let us now give a general definition.

Definition 2. Let U, x be a pair consisting of a connected Riemann surface U and
a non constant meromorphic function 2 on U. The map f — df/dx defines the
derivation in the field F' of all meromorphic functions on U (the ratio of two mero-
morphic 1-forms is a well-defined meromorphic function). A functional differential
field is any differential subfield of F' (containing all complex constants).

The following construction helps to extend functional differential fields. Let K
be a differential subfield of the field of meromorphic functions on a connected Rie-
mann surface U equipped with a meromorphic function z. Consider any connected
Riemann surface V' together with a nonconstant analytic map «: V' — U. Fix the
function 7*x on V. The differential field F' of all meromorphic functions on V' with
the differentiation ¢’ = do/m*dx contains the differential subfield 7*K consisting
of functions of the form 7* f, where f € K. The differential field 7* K is isomorphic
to the differential field K, and it lies in the differential field F'. For a suitable choice
of the surface V, an extension of the field 7* K, which is isomorphic to K, can be
done within the field F.

Suppose that we need to extend the field K, say, by an integral y of some
function f € K. This can be done in the following way. Consider the covering
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of the Riemann surface U by the Riemann surface V of an indefinite integral y of
the form fdx on the surfave U. By the very definition of the Riemann surface V/,
there exists a natural projection 7: V' — U, and the function y is a single-valued
meromorphic function on the surface V. The differential field F' of meromorphic
functions on V' with the differentiation ¢’ = dy/7*dz contains the element y as well
as the field 7* K isomorphic to K. That is why the extension 7* K (y) is well defined
as a subfield of the differential field F'. We mean this particular construction of the
extension whenever we talk about extensions of functional differential fields. The
same construction allows to adjoin a logarithm, an exponential, an integral or an
exponential of integral of any function f from a functional differential field K to
K. Similarly, for any functions fi, ..., f, € K, one can adjoin a solution y of an
algebraic equation y™ + fiy™" ' +---+ f, = 0 or all the solutions 1, ..., ¥, of this
equation to K (the adjunction of all the solutions y1, ..., y, can be implemented on
the Riemann surface of the vector-function y = y1, ..., y,). In the same way, for
any functions fi, ..., fn+1 € K, one can adjoin the n-dimensional C-affine space of
all solutions of the linear differential equation 4™ + f1y* =D 4+ ..+ foy+ foi1 =0
to K. (Recall that a germ of any solution of this linear differential equation admits
an analytic continuation along a path on the surface U not passing through the
poles of the functions f1, ..., fn+1.)

Thus, all above—mentioned extensions of functional differential fields can be im-
plemented without leaving the class of functional differential fields. When talking
about extensions of functional differential fields, we always mean this particular
procedure.

The differential field of all complex constants and the differential field of all
rational functions of one variable can be regarded as differential fields of functions
defined on the Riemann sphere.

3. CLASSES OF FUNCTIONS AND OPERATIONS ON MULTIVALUED FUNCTIONS

An indefinite integral of an elementary function is a function rather than an
element of an abstract differential field. In functional spaces, for example, apart
from differentiation and algebraic operations, an absolutely non-algebraic operation
is defined, namely, the composition. Anyway, functional spaces provide more means
for writing “explicit formulas” than abstract differential fields. Besides, we should
take into account that functions can be multivalued, can have singularities and so
on.

In functional spaces, it is not hard to formalize the problem of unsolvability of
equations in explicit form. One can proceed as follows: fix a class of functions
and say that an equation is solvable explicitly if its solution belongs to this class.
Different classes of functions correspond to different notions of solvability.

3.1. Defining classes of functions by the lists of data. A class of functions
can be introduced by specifying a list of basic functions and a list of admissible
operations. Given the two lists, the class of functions is defined as the set of all
functions that can be obtained from the basic functions by repeated application of
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admissible operations. Below, we define the class of generalized elementary func-
tions and the class of generalized elementary functions over a functional differential
field K in exactly this way.

Classes of functions which appear in the problems of integrability in finite terms
contain multivalued functions. Thus the basic terminology should be made clear.
We work with multivalued functions “globally”, which leads to a more general un-
derstanding of classes of functions defined by lists of basic functions and of admis-
sible operations. A multivalued function is regarded as a single entity. Operations
on multivalued functions can be defined. The result of such an operation is a set of
multivalued functions; every element of this set is called a function obtained from
the given functions by the given operation. A class of functions is defined as the
set of all (multivalued) functions that can be obtained from the basic functions by
repeated application of admissible operations.

3.2. Operations on multivalued functions. Let us define, for example, the
sum of two multivalued functions on a connected Riemann surface U.

Definition 3. Take an arbitrary point a in U, any germ f, of an analytic function
f at the point ¢ and any germ g, of an analytic function g at the same point a.
We say that the multivalued function ¢ on U generated by the germ ¢, = f, + g4
is representable as the sum of the functions f and g.

For example, it is easy to see that exactly two functions of one variable are rep-
resentable in the form /z + v/z, namely, f; = 2\/x and fs = 0. Other operations
on multivalued functions are defined in exactly the same way. For a class of mul-
tivalued functions, being stable under addition means that, together with any pair
of its functions, this class contains all functions representable as their sum. The
same applies to all other operations on multivalued functions understood in the
same sense as above.

In the definition given above, not only the operation of addition plays a key role
but also the operation of analytic continuation hidden in the notion of multivalued
function. Indeed, consider the following example. Let fi; be an analytic function
defined on an open subset V of the complex line C! and admitting no analytic
continuation outside of V', and let fo be an analytic function on V given by the
formula fo = —fi. According to our definition, the zero function is representable in
the form f1 + fo on the entire complex line. By the commonly accepted viewpoint,
the equality f1 + fo = 0 holds inside the region V' but not outside.

Working with multivalued functions globally, we do not insist on the existence
of a common region, were all necessary operations would be performed on single-
valued branches of multivalued functions. A first operation can be performed in
a first region, then a second operation can be performed in a second, different
region on analytic continuations of functions obtained on the first step. In essence,
this more general understanding of operations is equivalent to including analytic
continuation to the list of admissible operations on the analytic germs.
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4. GENERALIZED ELEMENTARY FUNCTIONS

In this section we define the generalized elementary functions of one complex
variable and the generalized elementary functions over a functional differential field.
We also discuss a relation of these notions with generalized elementary extensions of
differential fields. First we’ll present needed lists of basic functions and of admissible
operations.

List of basic elementary functions

1. All complex constants and an independent variable z.

2. The exponential, the logarithm, and the power %, where « is any constant.

3. The trigonometric functions sine, cosine, tangent, cotangent.

4. The inverse trigonometric functions arcsine, arccosine, arctangent, arc-
cotangent.

Lemma 2. Basic elementary functions can be expressed through the exponentials
and the logarithms with the help of complex constants, arithmetic operations and
compositions.

Lemma 2 can be considered as a simple exercise. Its proof can be found in [1].

List of some classical operations

1. The operation of composition takes functions f,g to the function f o g.

2. The arithmetic operations take functions f, g to the functions f+g¢, f — g,
fg, and f/g.

3. The operation of differentiation takes function f to the function f’.

4. The operation of solving algebraic equations takes functions fi, ..., f, to
the function y such that y™ + fiy" ! + .- + f, = 0 (the function y is
not quite uniquely determined by functions fi, ..., f, since an algebraic
equation of degree n can have n solutions.

Definition 4. The class of generalized elementary functions of one wvariable is
defined by the following data:

List of basic functions: basic elementary functions.

List of admissible operations: Compositions, Arithmetic operations, Differentia-
tion, Operation of solving algebraic equations.

Theorem 3. A (possibly multivalued) function of one complex variable belongs
to the class of generalized elementary functions if and only if it belongs to some
generalized elementary extension of the differential field of all rational functions of
one variable.

Theorem 3 follows from Lemma 2 (all needed arguments can be found in [1]).
Let K be a functional differential field consisting of meromorphic functional on
a connected Riemann surface U equipped with a meromorphic function .

Definition 5. Class of generalized elementary functions over a functional differ-
ential field K is defined by the following data.
List of basic functions: all functions from the field K.
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List of admissible operations: Operation of composition with a generalized ele-
mentary function ¢ that takes f to ¢ o f, Arithmetic operations, Differentiation,
Operation of solving algebraic equations.

Theorem 4. A (possibly multivalued) function on the Riemann surface U belongs
to the class of generalized elementary functions over a functional differential field
K if and only if it belongs to some generalize elementary extension of K.

Theorem 4 follows from Lemma 2 (all needed arguments can be found in [1]).

5. LIOUVILLE’S THEOREM
In 1833 Joseph Liouville proved the following fundamental result.

Liouville’s Theorem. An integral y of a function f from a functional differential
field K is a generalized elementary function over K if and only if y is representable
in the form

y(z) = /f(t) dt =ro(z) + > Ailnri(z), (1)
Zo i=1

where ro, ..., rm € K and A1, ..., Ay, are complex constants.

For large classes of functions algorithms based on Liouville’s Theorem make
it possible to either evaluate an integral or to prove that the integral cannot be
“evaluated in finite terms”.

Let us outline an inductive proof of Liouville’s Theorem.

Definition 6. A function g is a generalized elementary function of complexity < k
if there is a chain K = Fy C F; C --- C F}, of functional differential fields such
that ¢ € Fj, and for any 0 < ¢ < k either F;;; is a finite extension of Fj, or
F;11 is a pure transcendental extension of F; obtained by adjoining finitely many
exponentials, and logarithms over F;.

We will prove the following induction hypothesis I(m): Liouville’s Theorem is
true for every integral y of complexity < m over any functional differential field
K. The statement I(0) is obvious: if y € K, then y =19 € K. Now let y' € K
and y € Fj. Since y’ € Fj, by induction y = Ry + Zgzl Ailn R;, where Ry,
Ry, ..., Ry € F1. We need to show that y is representable in the form (1) with
7o, -, Tm € Fo = K We have the following two cases to consider:

1. Fy is a finite extension of Fy = K. The statement of induction hypothesis
in that case was proved by Abel and is called Abel’s Theorem. We will present its
proof in the section 6.

2. F) is a pure transcendental extension of Fy = K obtained by adjoining
exponentials and logarithms over K. We will deal with this case in section 7.

6. ALGEBRAIC CASE

In Section 6.1 we discuss finite extensions of differential fields. In Section 6.2 we
present a proof of Abel’s Theorem.



336 A. KHOVANSKII

6.1. An algebraic extension of a functional differential field. Let
P(z)=2"+a1z" '+ +an (2)

be an irreducible polynomial over K, P € K|[z]. Suppose that a functional differ-
ential field F' contains K and a root z of P.

Lemma 5. The field K(z) is stable under the differentiation.

Proof. Since P is irreducible over K, the polynomial %—IZD has no common roots with
P and is different from zero in the field K[z]/(P). Let M be a polynomial satisfying
a congruence M 22 = —92 (mod P). Differentiating the identity P(z) = 0 in the
field F, we obtaln that 22(2)z' + 2E(z) = 0, which implies that 2’ = M(z). Thus
the derivative of the element z coincides with the value at z of a polynomial M.
Lemma 5 follows from this fact. O

Let K C F and K C F be functional differential fields, and P, P irreducible
polynomlalb over K, K correspondingly. Suppose that F F' contain roots z, % of
P, P.

Theorem 6. Assume that there is an isomorphism 7: K — K of differential fields
K, K, which maps coefficients of the polynomial P to the corresponding coefficients
of the polynomial P. Then 7t can be estended in a unique way to the differential
isomorphism p: K(z) — K(2).

Proof of Theorem 6 could be obtain by the arguments used in the proof of
Lemma 5.

6.2. Induction hypothesis for an algebraic extension. Let 21, ..., z, be the
roots of the polynomial P given by (2) and let F; = K(z;). Assume that there is
an element y; € F; such that vy} € K, M; € K|[z] and ¥} is representable in the

form
li

N, (Mi(=) ;
_;)\z Mi(o1) + (Mo(z1))'. (3)

Abel’s Theorem. Under the above assumptions the element | is representable in
the form (1) with polynomials M; independent of z1, i.e., with My, M, ..., M, €
K.

Proof. Let y1 be equal to Q(z1), where Q € K[z]. For any 1 < j < n let y; be the
element Q(z;). According to Theorem 6 the identity (3) 1mphes the identity

q
Mi(z;))'

- )\i< T 4 (Mo(z4)). 4

U= A Gy (Vo) (4)

Since y} € K we obtain n equalities y; = --- = y/,. To complete the proof it

is enough to take the arithmetic mean of n equahtles (4). Indeed the elements

M; = [Ti<cren Mi(2k) and My = Zl<k<n My(z) are symmetric functions in the

roots of the polynomial P thus Moy, . M e K. O
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Remark. The proof uses implicitly the Galois group G of the splitting field of the
polynomial P over the field K. The group G permutes the roots y, ..., y, of P.
The element M; = [Ticren Mi(2x) and My = > 1<ken Mo(2k) are invariant under
the action of G thus they belong to the field K.

7. PURE TRANSCENDENTAL CASE

In this section we prove induction hypothesis in the pure transcendental case.
First we will state the corresponding Theorem 7 and will outline its proof.

Let F} be a functional differential field obtained by extension of the functional
differential field K by adjoining algebraically independent over K functions

y1 =1Inay, ..., yp =Inag, 21 =expby, ..., z, = expby,, (5)

where aq, ..., ag, by, ..., by are some functions from K. We will assume that
F consists of meromorphic functions on a connected Riemann surface U and the
differentiation in K3 using a meromorphic function x on U. Let X be the manifold
U x G, where G = CF x (C*)". Consider a map v: U — C* x (C*)" given by
formula

¥(p) = v1(p), - -5 Yk(p), 21() - - -, 2n(p),

where the functions y;, z; are defined by (5).
Let X be the product U x (C)* x (C*)". Denote by I' C X the graph of the
map . Consider a germ ® of a complex valued function at the point a € X.

Definition 7. We say that ® is a logarithmic type germ if ® is representable in the
form ®, = Ry + Zgzl AiIn R;, where R; are germs at the point a € X of rational
functions of (y1, ..., Yk, 21, ..., 2n) with coeficients in K and \; are complex
numbers.

Theorem 7. Let ® be a logarithmic type germ at a point a = (py, ¥(po)) € . Then
the germ of the function ®(p, v(p)) at the point pg € U is a germ of an integral
over K if and only if ® is representable in the following form

Zj
2;(po)

k n
®(p, y, z) = (p, 7(po)) + Z ci(yi — yi(po)) + th In ; (6)
1 1

where ¢;, t; are complex constants.

Theorem 7 proves induction hypothesis in the pure transcendental case. Indeed
®(p, v(po)) is a germ of a function from the field K and according to (5) the
identities ¢;y; = ¢;Inay, t;1Inz; = t;b; hold. We split the claim of Theorem 7 into
two parts.

First we consider the natural action of the group G = (C*)x (C*)" on X = Ux G
and we describe all germs of closed 1-forms locally invariant under this action.
Corollary 11 claims that each such 1-form is a differential of a function representable
in the form (6).

Second we show that if the germ & satisfies the conditions of Therem then the
germ d® is locally invariant under the action of the group G (see Theorem 16).
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7.1. Locally invariant closed 1-forms. Let G be a connected Lie group acting
by diffeomorphisms on a manifold X. Let m: G — Diff(X) be a corresponding
homomorphism from G to the group Diff (X) of diffeomorphisms of X. For a vector
& from the Lie algebra G of G the action 7 associates the vector field V¢ on X. The
germ wy, at a point zy € X of a differential form w on X is locally invariant under
the action 7 if for any § € G the Lie derivative Ly, w is equal to zero.

Lemma 8. The germ of the differential dyy, = wg, of a smooth function ¢ is
locally invariant under the action m if and only if for each £ € G the Lie derivative
Ly, is a constant M (&) (which depends on §).

Proof. Applying “Cartan’s magic formula” Ly,w = ixdw + d(ixw) we obtain that
Ly,w = 0 if and only if d(Ly, ¢) = 0, which means that Ly, ¢ is constant. O

The following theorem characterizes locally invariant closed 1-forms more explic-
itly.

Theorem 9. The germ of the differential dp,, = wy, of a smooth complex valued
function ¢ is locally invariant under the action w if and only if there exists a local
homomorphism p of G to the additive group C of complex numbers such that for
any g € G in a neighborhood of the identity the following relation holds:

p(m(g)zo) = p(z0) + p(g)-

Proof. For £ € G the Lie derivative Ly, is constant M (&) by Lemma 8. Let us
show that for £ € [G], where [G] is the commutator of G the constant M (§) equals
to zero. Indeed if £ = [r, p] then

LVEQO = LVpLVTQO - LVTLV,,SO = LVPM(T) - LVTM(p) =0.

Thus the linear function M : G — C mapping £ to M (&) provides a homomorphism
of G to the Lie algebra of the additive group C of complex numbers. Let p be the
local homomorphism of G to C corresponding to the homomorphism M.

Consider a function ¢ on a neighborhood of the identity in G defined by the
following formula: ¢(g) = p(xo)+p(g). By definition on a neighborhood of identity
the function ¢ has the same differential as the function ¢(7(g)z). Values of these
functions at the identity are equal to ¢(xg). Thus these functions are equal. O

Assume that X = U x G, where U is a manifold and an action 7 is given by the
formula 7(g)(x, g1) = (x, gg1). Applying Theorem 9 to this action we obtain the
following corollary.

Corollary 10. If germ of differential dp = w of a smooth complex valued function
© at a point (g, go) € U x G is locally invariant under the action 7 then in a
neighborhood of the point (xq, go) the following identity holds:

(x, 9) = oz, 90) + plggy 1), (7

where p is a local homomorphism of G to the additive group of complex numbers.

Proof. Follows from Theorem 9 since the element gg, ! maps the point (z, go) to
the point (z, g). O
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Let G be the group C* x (C*)", where C and C* are additive and mulplicative
group of complex numbers. We will consider the group C* x (C*)™ with coordinate
functions (y, 2) = (y1, - - Yk, 21, - - -, 2n) assuming that zy - - - z, # 0.

Corollary 11. If in the assumptions of Corollary 10 for G = CF x (C*)" in a
neighborhood of (o, Yo, 20) € U x (CF x (C*)™) the following identity holds

2
e(@, y, 2) = o(z, Yo, z0) + Z Ai(yi — (yo)i) + Z pj In (T])-’
1<i<k 1<i<n 0/j

where A1, ..., A\g, W1 ..., Uy are complex constants.

Proof. Follows from (7) since any local homomorphism p from the group CF x (C*)"
to the additive group of complex numbers can be given by formula

p(y17"'ayk>zl7"'>zn): Z )‘lyl+ Z ,U/jhle,

1<i<k 1<5<n

where A\; and p; are complex constants. U

7.2. Vector field associated to a logarithmic-exponential extension. We
use the notations introduced in the section 7. Let G be the group C* x (C*)™ and
let X be the product U x G consider the map v: U — CF x (C*)" given by the
following formula:

y1 =1Inay, ..., yp =Inag, z1 =expby, ..., 2z, =expby,. (8)
The map v satisfies the following differential relation:
dy =day /a1, ..., dag/ag, z1db1, ..., z,db,.

Definition 8. Let V be a meromorphic vector field on X defined by the following
conditions. If V, is the value of V' at the point a = (p, y1, .-, Yk, 21, - -+, 2n) € X
then (dv, Vo) = 1, (dyi, Vo) = aj/ai(p) for 1 < i < k, (dzj, Vo) = b;/bi(p) for
I<j<n.

Vector field V is regular on U° x G, where U° is an open subset in U which
does not contain zeros and poles of the functions ay, ..., ag, nor poles of functions
b1, ..., by, nor zeros and poles of the 1-form dx. By construction the graph I' =
(p, v(p) C X of the map ~ is an integral curve for differential equation on X defined
by the vector field v.

The following lemmas are obvious.

Lemma 12. The vector field V is invariant under the action m on X. For each
element g € G the curve gI' C X of the graph T’ of v is an integral curve for V.

Lemma 13. The field K(y, z) of rational functions in y1, ..., Yk, 21, - -, Zn OVEr
the field K is invariant under the action w on X. For each vector £ € G in the Lie
algebra G of G the Lie derivative Ly, R of R € K(y, z) belongs to K(y, z).
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7.3. Pure transcendental logarithmic exponential extension. We will as-
sume below that the components (8) of « are algebraically independent over K.

Liouville’s principle. If a polynomial P € K[y1, ..., Yk, 21, - - -, 2n] vanishes on
the graph T’ C X of the map v then P is identically equal to zero.

Proof. If P is not identically equal to zero then the components of v are algebraically
dependent over the field K. O

Theorem 14. The extension K C Fy is isomorphic to the extension of K by the
field of rational functions K(y, z) in (y1, ..., Yk, 21, - - ., 2n) over K considered as
the field of functions on X equipped with the differentiation sending f € K(y, z) to
the Lie derivative Ly f with respect to the vector field V introduced in Definition 8.

Proof. By assumption components (8) of the map v are algebraically independent
over K thus each function from the extension obtained by adjoining to K by these
components is representable in the unique way as a rational function from K(y, z).
By definition the derivatives of the components (8) are coincide with their Lie
derivatives with respect to the vector field V. (]

The action 7 of the group G = C* x (C*)™ on X induces the action 7* of G on the
space of functions on X containing the field K (y, z). The vector field V is invariant
under the action 7. Thus 7* acts on K(y, z) ~ F; by differential automorphisms.
Easy to see that a function f € K(y, z) is fixed under the action 7* if and only
if f € K, i.e., the group G is isomorphic to the differential Galois group of the
extension K C F;. We proved the following result

Theorem 15. The differential Galois group of the extension K C F} is isomorphic
to the group G. The Galois group is induced on the differential field K (y, z) with
the differentiation given by Lie derivative with respect to the field V' by the action
of G on the manifold X = U x CF x (C*).

Now we are ready to complete inductive proof of the Liouville’s Theorem.

Theorem 16. Let @ be a logarithmic type germ at a point a = (pg, v(po)) €T C X.
If the germ of the function ®(p, v(p)) on U at the point po € U is a germ of an
integral f over K then the germ of the differential d® at the point a € X is locally
invariant under the action m on X.

Proof. By the assumption of Theorem the restriction of the function (Ly® — f) on
T is equal to zero. Since the function (Ly® — f) belongs to the field K(y, z) the
function (Ly® — f) by Liouville’s principle is equal to zero identically on X. In
particular it is equal to zero on the integral curve gI' the vector field V, where g
is an element of the group G. Thus the restrictions of function Ly m(g)*(® — f) to
T" equals to zero. Since the function f is invariant under the action 7* we obtain
that the restriction on T' of Ly (® — 7*(g)®) is equal to zero. Differentiating this
identity we obtain that for any £ € G the restriction on I' of Ly (Ly, ® equals to
zero. Thus on I' the function L¢® is constant. Lemma 13 implies that the function
Ly, belongs to the field K(z, y). Thus the functionLy, is a constant on X by
Liouville’s principle. Thus the 1-form d® is locally invariant under the action 7 by
Lemma 8. Theorem 16 is proved. U
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Thus we complete proof of Theorem 7 and the inductive proof of Liouville’s
Theorem.
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